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RNA polymerase II contains a long C-terminal domain (CTD) that
regulates interactions at the site of transcription. The CTD
architecture remains poorly understood due to its low sequence
complexity, dynamic phosphorylation patterns, and structural
variability. We used integrative structural biology to visualize
the architecture of the CTD in complex with Rtt103, a 3′-end RNA-
processing and transcription termination factor. Rtt103 forms
homodimers via its long coiled-coil domain and associates densely
on the repetitive sequence of the phosphorylated CTD via its
N-terminal CTD-interacting domain. The CTD–Rtt103 association
opens the compact random coil structure of the CTD, leading
to a beads-on-a-string topology in which the long rod-shaped
Rtt103 dimers define the topological and mobility restraints of
the entire assembly. These findings underpin the importance of
the structural plasticity of the CTD, which is templated by a par-
ticular set of CTD-binding proteins.
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The C-terminal domain (CTD) of the largest subunit of RNA
polymerase II (RNAPII) consists of multiple tandem repeats

(26 in yeast, 52 in humans) of the heptapeptide consensus Tyr1-
Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, which is highly conserved
from yeast to human (1–3). The CTD serves as a binding
platform for many RNA/protein-binding factors involved in the
regulation of the transcription cycle (1, 3). Yeast are inviable if
the CTD is trimmed to less than 11 repeats of the heptapeptide
consensus (4) or if the periodicity of two repeats is perturbed
(5), suggesting the importance of both the CTD length and its
repetitiveness.
The CTD interaction network is regulated by posttranslational

modifications of the CTD, which yield specific phosphorylation
and subsequent factor-binding patterns in coordination with the
transcription cycle (the “CTD code”) (1, 6–11). Phosphorylations
at Y1, S2, T4, S5, and S7 are the most common and well-studied
posttranslational modifications of the CTD (12). Mass spec-
trometry studies of the CTD showed that the CTD heptads are
homogeneously phosphorylated along the entire length of the
domain in proliferating yeast and human cells (13, 14). Major
phosphorylation sites are S2 and S5, whereas Y1, T4, and S7 are
minor phosphorylation sites (13, 14), but all sites are important
for transcription regulation and proper functioning of the cell.
On average, each CTD heptad is phosphorylated once and the
occurrence of two phosphorylations per repeat is a rare event
(13, 14). The coimmunoprecipitation of specific CTD phos-
phoisoforms revealed distinct functional sets of factors (CTD-
interactome) related to each CTD phosphoisoform (15).
The CTD has no well-defined 3D structure and, therefore, is

not observed in the crystal structures of RNAPII (16–19) and
forms fuzzy densities on electron microscopy images (20, 21).
Nevertheless, the first structural information of the unbound
CTD has recently been reported in the fruit fly (22, 23), where it
was shown that the CTD forms a compact random coil and that
its phosphorylation induces a modest extension and stiffening of
the CTD (22, 23).
Current structural knowledge of interactions between the

CTD and its recognition factors is based on short peptides

mimicking the CTD bound to given CTD binding factors (1, 19,
24). However, the atomic-level structural architecture of the full-
length CTD modulated by associated factors remains unknown.
Several studies attempted to propose a structural model for the
full-length CTD. For example, in the complex of the CTD peptide
with the CTD-interacting domain (CID) of Pcf11, a subunit of
cleavage factor IA (25), the CTD heptad was found to adopt a
β-turn conformation (26). Therefore, a compact, left-handed,
β-spiral model of the CTD was proposed (26). A β-spiral confor-
mation would allow the CTD chain with a length of 100 Å to
fold into a compact structure, which corresponds to the ob-
served densities in low-resolution electron microscopy images of
RNAPII (20). The heterodimer composed of the human proteins
RPRD1A and RPRD1B was found to bind the CTD, thereby
stimulating the recruitment and phosphatase activity of RPAP2
(pS5-CTD-phosphatase) (27). These findings led to the proposal of
a model in which the CTD and accessory molecules form a
high-order arrangement dubbed the “CTDsome” (27).
To probe the CTDsome architecture experimentally, we set

out to apply integrative structural biology methods and investi-
gate how the termination factor Rtt103 decorates the sequence
of the CTD. First, we independently solved high-resolution
structures of stable subunits by solution NMR spectroscopy
(NMR) and X-ray crystallography. Then, we corroborated the
obtained structural information with small-angle X-ray scattering
(SAXS) data to reconstruct the overall architecture of the
Rtt103–CTD complex. We show that Rtt103 contains a coiled-
coil domain that mediates Rtt103 dimerization and uses its
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RNA polymerase II (RNAPII) not only transcribes protein coding
genes and many noncoding RNA, but also coordinates tran-
scription and RNA processing. This coordination is mediated by
a long C-terminal domain (CTD) of the largest RNAPII subunit,
which serves as a binding platform for many RNA/protein-
binding factors involved in transcription regulation. In this
work, we used a hybrid approach to visualize the architecture
of the full-length CTD in complex with the transcription ter-
mination factor Rtt103. Specifically, we first solved the struc-
tures of the isolated subcomplexes at high resolution and then
arranged them into the overall envelopes determined at low
resolution by small-angle X-ray scattering. The reconstructed
overall architecture of the Rtt103–CTD complex reveals how
Rtt103 decorates the CTD platform.
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N-terminal CID to read adjacent repetitive phosphorylation
marks on the CTD independently of one other. Our reconstruction
demonstrates how Rtt103 explores the repetitiveness and length
of the CTD sequence while keeping the entire arrangement
partially flexible.

Results
Limited Proteolysis of Rtt103 Reveals a Coiled-Coil Domain That
Mediates Dimerization. In our divide-and-conquer approach, we
first identified the overall domain organization of Rtt103. Trypsin
digestion of the full-length Rtt103 coupled with mass spectrometry

revealed that the protein fragment harboring amino acid residues
1–246 (Rtt1031–246) is protected from proteolytic cleavage (Fig. 1A
and Fig. S1). The remaining C-terminal part of Rtt103 (amino acid
residues 247–409) was efficiently digested by trypsin, suggesting the
absence of additional structured domains (Fig. 1A and Fig. S1).
Subsequent biochemical characterization of the identified stable
constructs revealed that Rtt103141–246 and Rtt1031–246 form homo-
dimers (Fig. S2 A and B). Subsequent crystallization screens of the
Rtt103141–246 and Rtt1031–246 constructs showed that only
the Rtt103141–246 construct formed well-diffracting crystals. The
structure of Rtt103141–246 was determined to a resolution of 2.6 Å
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Fig. 1. Dimerization and RNAPII CTD recognition by Rtt103. (A) Scheme of Rtt103 domain organization (Upper). The numbers below the scheme represent
borders of the amino acid segments. Structured and flexible regions were determined based on the limited proteolysis study (Fig. S1). The recombinant
protein constructs used in the study, along with their respective molecular masses, are shown (Lower). CID, CTD-interacting domain; polyD, polyaspartate
stretch. (B) Crystal structure of the Rtt103141–246 coiled-coil domain shown superimposed with an ab initio model (gray mesh) derived using DAMMIN (40) from
SAXS scattering data. The two different polypeptide chains of the coiled-coil dimer are shown in red and blue; their respective N- and C-termini, as well as
α-helices, are indicated. (C) Electrostatic surface representation of the Rtt103 CID (electropositive in blue, electronegative in red, neutral in white) in complex
with the pS2pS7-CTD peptide (yellow sticks; PDB ID code: 5M9D). The N- and C-termini of the peptide are indicated. Dashed black circles indicate electro-
positive areas that accommodate pS7 residues. (D) Detailed view of the Rtt103 CID (gray cartoons) bound to the pS2pS7-CTD peptide (yellow sticks). High-
lighted Rtt103 CID residues (gray sticks, blue labels) form hydrophobic contacts and putative hydrogen bonds with the pS2pS7-CTD peptide (yellow sticks,
black labels). The sequence of the peptide used for structure determination is indicated above; residues that showed interaction with the Rtt103 CID are
shown in black and red.
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(Tables S1 and S2). We found that each Rtt103141–246 subunit
consists of two α-helices, namely the α1-helix (Gln146-Glu177)
with a small bend in the middle and a long α2-helix of ∼105 Å in
length (Val184-Asp246) (Fig. 1B). In the crystal, two protein
chains form a dimer where the α2-helices are arranged in an
antiparallel fashion (Fig. 1B). This architecture of the dimer is in
agreement with findings from gel filtration experiments (Fig.
S2A) and SAXS data (Fig. S2B). Importantly, the central region
of the α2-helix (Lys200-Ile238) contains a coiled-coil signature,
which is arranged in trans in the antiparallel dimer assembly of
the two Rtt103 molecules. The coiled-coil domain contains a
characteristic knobs-into-holes packing with mixed “a” and “d”
layers (Fig. S2C), with an average pitch of 172 Å (defined by
CCCP; ref. 28). The dimer structure is also stabilized by multiple
intermolecular (Asp149-Lys152, Asp153-Lys216, Lys168-Asp172,
Asp223-Arg226) and intramolecular (Lys200-Glu239, Glu231-
Arg210-Glu224) salt bridges. Altogether, the key findings re-
garding Rtt103 architecture are as follows: (i) Rtt103 contains a
coiled-coil domain that follows the CID and (ii) the C-terminal
half of the Rtt103 is disordered.

The Rtt103 CID Binds the Extended pS2-pS7-CTD Peptide. The struc-
ture of Rtt1031–131 (or CTD-interacting domain; CID) bound to
a short Ser2-phosphorylated CTD moiety has previously been
reported (29). Here, we used NMR to determine the structure of
Rtt1031–131 bound to a longer CTD substrate (Ser2/7-phosphorylated;
Tables S3 and S4), which revealed that the recognition interface
of the CID is, in fact, larger than previously reported (29). Our
NMR structure of Rtt1031–131 bound to the extended TSPpS7
YpS2PTSPpS7 YpS2PTS peptide (termed pS2pS7-CTD) con-
firmed the previously reported observation regarding the recog-
nition of the upstream region of pS2pS7-CTD, and further revealed
information regarding the recognition of the downstream region of
pS2pS7-CTD (Fig. 1 C and D). The structure of Rtt103 CID is
formed by eight α-helices in a right-handed superhelical arrange-
ment. The NMR data show that the pS2pS7-CTD peptide binds at
the conserved surface formed by helices α2, α4, and α7 of the
Rtt103 CID (Fig. 1D and Fig. S3). NMR revealed intermolecular
contacts between Rtt1031–131 and the residues P6a, pS7a, Y1b, pS2b,
P3b, T4b, S5b, and Y1c of the pS2pS7-CTD peptide. Specifically, P6a
lies in the proximity of the hydrophobic area formed by the
N-terminal tip of the α2-helix, being involved in multiple intermo-
lecular contacts with Ser18, Gln19, and Glu20. Residue Y1b is also
docked into a hydrophobic pocket (Ile22, Tyr62) and stabilized by
a hydrogen bond between its hydroxyl group and the side-chain
amide group of Asn65. Residue P3b forms hydrophobic interac-
tions with Val109 and Ile112. Residues pS2bP3bT4bS5b form a
β-turn stabilized by hydrogen bonds between the pS2b carbonyl and
the S5b amide, between the pS2b γ-oxygen and T4b amide, and
between the pS2b phosphate and T4b hydroxyl. Perturbation of the
above-described hydrophobic pocket (not affecting the structural
integrity; Fig. S4C and refs. 27 and 30) caused a drop of 30- to 50-
fold in the affinity between pS2pS7-CTD and Rtt1031–131 (KD =
33 ± 1.2 μM for Ile112Ala, KD = 80 ± 11 μM for Ile112Gly) (Fig.
S4). In agreement with previous structural observations (29), we
noted that the phosphorylation of S2b is recognized by the side
chain of Arg108. Interestingly, we observed multiple close contacts
between Y1c and the C-terminal parts of helices α4 and α7. The
positioning of Y1c near the tip of helices α4 and α7 induces a
second sharp turn in the pS2pS7-CTD peptide. The side chain of
Y1c forms a broad range of hydrophobic contacts with Lys72,
Gly73, and Ile118, whereas the guanidinium group of Arg116
coordinates the backbone of pS2pS7-CTD. We found that charge-
swapping mutations at the interacting sites of Rtt103 (not affect-
ing the structural integrity; Fig. S4C) resulted in pronounced af-
finity decrease between Rtt103 and pS2pS7-CTD (KD = 9.7 ± 0.7,
51 ± 2.2, and 65 ± 8.9 μM for Lys72Glu, Arg116Glu, and
Lys72Glu/Arg116Glu, respectively), highlighting the importance

of the CTD backbone interactions with Arg116. A large area of
the Rtt103 CID surface is positively charged and enriched in
residues that could stabilize interaction with negatively charged
sites of the phosphorylated CTD peptide (Fig. 1C). Although our
data did not indicate the presence of intermolecular contacts for
the pS7 residues, the positions of these residues are indirectly
defined by the nuclear Overhauser effects from the neighboring
residues. Therefore, residues pS7 are likely involved in charge–
charge interactions with Lys27 and Lys105 (which is part of the
poly-Lys tract Lys103-Lys104-Lys105) (Fig. 1C). We found that
the Lys27Glu mutant (perturbation of one of the pS7 binding
pockets; Fig. 1C) showed lower binding only for the pS7 con-
taining peptide (KD of 13.2 ± 0.3 μM and 28.5 ± 1 μM for wild
type and Lys27Glu, respectively) but not for the pS2-containing
peptide (KD of 1.6 ± 0.07 μM and 2 ± 0.8 μM for wild type and
Lys27Glu, respectively). Altogether, the key finding is that the
Rtt103 CID interacts with pS2pS7-CTD via a larger area than
previously reported (29), specifically recognizing the down-
stream region of the CTD peptide. Our structure reveals that
P6apS7aY1bpS2bP3bT4bS5bP6bpS7bY1c is the minimal CTD-binding
moiety recognized by Rtt103.

Two CIDs Tethered by a Coiled-Coil Domain Tumble Independently.
As a result of the antiparallel arrangement of the coiled coils, the
Rtt103 CIDs are attached by a linker of 15 amino acids to the
middle region of the coiled-coil domain. NMR investigations of
the Rtt1031–246 and CID constructs showed that the CID struc-
ture is not influenced by the presence of the coiled-coil domain
and that the CIDs are likely to tumble independently (Fig. S5).
To visualize the arrangement of the Rtt103 CIDs relative to the
coiled-coil domains, we analyzed SAXS scattering data of puri-
fied Rtt1031–246 using available atomic structures (PDB ID
codes: 2KM4, 5M48) by ensemble-optimization method (EOM
2.0) (31). This approach enables deconvolving the conforma-
tional averaging into the contribution of individual conformers.
The obtained models suggest that the coiled-coil domain de-
fines the length of the protein (∼105 Å) (Fig. 2), and the linker
allows the CIDs to reach all across the 105-Å-long coiled-coil
domain. Thus, the CIDs could be positioned relatively close to
each other but are also able to sample a large surrounding space
to recognize the substrate (Movie S1). Next, we tested whether the
coiled-coil–mediated dimerization of Rtt103 affects the binding
to the CTD using fluorescence anisotropy (FA). We measured
the binding affinity for the minimal CTD-binding moiety (SPS
YpSPTSPpS YS) and a long CTD substrate (harboring two min-
imal CTD-binding moieties connected with a spacer; SPS
YpSPTSPpS YSPTSPS YpSPTSPpS YS) with Rtt1031–246 and
with the CID. We found that Rtt1031–246 binds to the minimal
CTD-binding moiety with a KD of 3.3 ± 0.06 μM, and to the
long CTD substrate with a KD of 0.3 ± 0.01 μM. The isolated
CID binds to the minimal CTD-binding moiety with a KD of 1.65 ±
0.13 μM, and to the long CTD substrate with a KD of 0.5 ± 0.01 μM.
This suggests that the dimerization increases the local concentration
of CIDs that are available for the CTD binding. Altogether, the key
finding is that dimerization of the Rtt103 coiled-coil domains does
not promote formation of a rigid structure between the Rtt103
CIDs, but in fact helps the CIDs sample multiple conformations
restricted only by their tethering to the flexible linker.

The Rtt103 Coiled-Coil Domain Restricts the Variability of the CTD–
CIDs Assembly. Next, we asked whether the coiled-coil-mediated
dimerization of Rtt103 affects the overall fashion in which the
repetitive CTD sequence is decorated with Rtt103 CIDs. The
complex between Rtt1031–246 and pS2E-CTD {pSer2-CTD mimic
[SPEFTCEPTSPS-(YEPTSPS)13-YEPAAADYKDDDDK]; Fig.
S6} was prepared by mixing individual proteins with molar excess
of Rtt1031–246, followed by size-exclusion chromatography and
SAXS data collection. The estimation of the molecular mass
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(MM) of the complex was done using DAMMIF (32), which
yielded a MM of 200 ± 5 kDa, that is close to the theoretical MM
of the Rtt1031–246:CTD complex with a ratio of 6:1 (190 kDa). In
terms of molecular architecture, it suggests that three Rtt103
dimers bind to a 13-repeat-long CTD upon saturation. The in-
terpretation of the scattering data was performed using the
CORAL software (33). The structures of the Rtt103 CID (PDB
ID code: 5M9D) and coiled-coil domain (PDB ID code: 5M48)
were combined together with the distance constraints between
the CTD and Rtt103 CID and fitted against the experimental
SAXS data. The calculation was repeated 10 times for each in-
teraction scenario with a ratio of 6:1 for Rtt1031–246:CTD, which
provided the best fit to the experimental data (Fig. 3 and Fig.
S7). All reconstituted complexes displayed a similar elongated
architecture characterized by a Dmax value of 180–250 Å (Fig.
S7B). One Rtt103 dimer is accommodated on four CTD repeats
(PS YEPTSPS YEPTSPS YEPTSPS YEPTS; CID recognition
sites are shown in bold). In this architecture, the coiled-coil
domains surround the individual Rtt103 CIDs accommodated on
the CTD (Fig. 3). The shielding provided by the coiled coils
restricts the flexibility of CIDs on the CTD to some extent, but
promotes the stretching of the compact random coil structure of
the CTD (22, 23). Interestingly, we obtained a similar quality fit
to the experimental data without including the constraint that
two CIDs of the dimer must bind neighboring CTD epitopes
(Fig. S7). The obtained models contain CIDs accommodated in
different areas of the CTD, supporting the hypothesis of residual
flexibility in the core of the CTDsome shielded from the outside
by coiled coils. Altogether, the key finding is that the CTDsome
architecture is dynamic and allows for optimal recognition of
available phosphorylation signals in the CTD. This variability is
essential as the CTD contains some poorly conserved heptads (2)
whose recognition is promoted by dimerization in which the

coiled-coil domains prime the sampling of the CTD epitopes
(Fig. 3 and Fig. S7).

Discussion
Assembly and reassembly of the CTDsome during transcription
by RNAPII is important for regulation of transcription and RNA
processing. However, due to the structural complexity and dy-
namics of the CTDsome, the mechanistic aspects of this process
remain poorly understood. Here, we report an experimentally
based structural model of the CTDsome, which has been derived
using a combination of X-ray, NMR, and SAXS data (Fig. 3).
First, we determined that Rtt103 is capable of dimerizing in

free form via a coiled-coil domain. Several CID-containing
proteins are known to have multimerization regions such as the
Nrd1-Nab3 heterodimerization region (34), coiled-coil region in
Pcf11 (35), and coiled-coil regions in RPRD1A, RPRD1B, and
RPRD2 (27, 36). The RPRD1A-RPRD1B heterodimer binds to
multiple pS2-CTD repeats and exposes the pS5 sites on the CTD,
which stimulates the activity of RPAP2 pS5-CTD phosphatase. It
is likely that the Rtt103 scaffold is used to recruit other factors or
enzymes (e.g., Rat1-Rai1) that act on the CTD. In contrast to
RPRD1A and RPRD1B, which include only the CID and di-
merization domain, Rtt103 has a long unstructured C-terminal
part that occupies half of the protein and, therefore, could greatly
impact multisubunit architectures and interactions with other
RNA/protein-binding factors.
Here, we determined that the Rtt103 CID binds across three

CTD heptads and that the minimal CTD binding moiety consists
of the P6apS7aY1bpS2bP3bT4bS5bP6bpS7bY1c sequence. These
findings indicate that the Rtt103 CID binds a longer CTD stretch
than previously reported (29). Accommodation of the core
P6aS7aY1bS2bP3bT4bS5b stretch of the CTD in the CID binding
pocket is highly conserved among CID–CTD peptide complexes
(26, 27, 37, 38). In contrast, the conformation of the upstream
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Fig. 2. The two Rtt103 CIDs are tethered by a coiled-coil domain but tumble independently. (A) Overlay of individual conformations from the ensemble of
free Rtt1031–246 structures derived using the ensemble-optimization method (EOM 2.0) (31) (χ2 = 1.001); front and side views are provided. Conformations are
superimposed based on structure of the coiled-coil domain. Conformations 2–5 are shown with 60% opacity. The two different polypeptide chains are shown
in red and blue. (B) Individual conformations from the Rtt1031–246 ensemble derived by EOM 2.0; the fraction (%), radius of gyration (Rg), and maximum
intraparticle distance (Dmax) are indicated for each conformation.

11136 | www.pnas.org/cgi/doi/10.1073/pnas.1712450114 Jasnovidova et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
24

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712450114/-/DCSupplemental/pnas.201712450SI.pdf?targetid=nameddest=SF7
www.pnas.org/cgi/doi/10.1073/pnas.1712450114


www.manaraa.com

and especially downstream region of the CTD peptide on the
CID surface varies among CID–CTD peptide complexes (26, 27,
37, 38). In our solution NMR structure, the pS2pS7-CTD peptide
makes multiple contacts with a conserved Arg116 residue and
exits the binding pocket between helices α4 and α7, thereby
occupying almost the whole conserved surface of the CID.
Similarly, the solution structure of pT4-CTD–Rtt103-CID and
crystal structure of RPRD1B/RPRD1A also exhibit an elongated
conformation of the CTD (27, 30). In these structures, the
binding of additional residues at the C-terminal of the β-turn
stretch of the CTD significantly changes the conformation of
bound CTD, which could be important for the higher order ar-
rangement of CIDs and exposure of the nonbound CTD residues
to other factors (27). Additionally, the extended interaction surface
of the CIDs in Rtt103 and RPRD1B/RPRD1A may partially

explain their higher affinity toward the CTD compared with the
affinity of the CIDs in Nrd1 and Pcf11 (38, 39).
The regulation of transcription requires a complex interplay

involving fast and dynamic exchange of multiple RNA/protein-
binding factors. This network is largely maintained and balanced
by means of a structurally adaptable CTD which increases the
local concentration of factors and allosterically regulates their
activity of transcription and RNA processing factors near the
emerging nascent transcript. Our reconstruction of the CTD in
complex with Rtt103 shows that Rtt103 can fully explore the
repetitiveness and length of the CTD sequence by occupying
CTD in a repetitive manner (“beads-on-a-string”) while keeping
the entire arrangement flexible and dynamic. Rtt103 dimerization
creates topological and mobility restraints, which, in turn, tune the
protein’s affinity toward the CTD by increasing the local con-
centration of CIDs, and further governs the exposure of the CTD
sequence to other protein-binding factors. We suggest that CTD
code readers, such as Rtt103, and other CTD effector molecules
form a high-order structure that is essential for the conception and
interpretation of the CTD code (Fig. 4 and Movie S2). The tail-
like architecture allows for quick exchange of binding factors and
coordinates the regulatory networks necessary for efficient gene
regulation. Interestingly, the structure of the CTD tail decorated
with Rtt103 dimers appears to be fully extended and protrudes
away from the invariant core of the RNAPII (Fig. 4 and Movie
S2). The structural model of the Rtt103–CTDsome demonstrates
how the CTD allows forming diverse and tuneable protein as-
semblies around the invariant core of the RNAPII, supporting the
complex networks necessary for efficient gene regulation.

Methods
A full description of the methods for protein expression, purification, and
fluorescence anisotropy measurements as well as NMR, X-ray, and SAXS data
collection and analysis is provided in SI Methods and Tables S5 and S6. SAXS
data are deposited in Small Angle Scattering Biological Data Bank (SASBDB ID:
SASDCZ2). The model and the diffraction data containing phase information
was deposited to Protein Data Bank, PDB ID code: 5M48. The atomic coordi-
nates and restraints for the NMR ensemble of the Rtt103-CID—pS2pS7-CTD
complex have been deposited in the Protein Data Bank, PDB ID code: 5M9D.
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Fig. 3. Multisubunit arrangement of Rtt1031–246 across half the length of
the CTD. (A) Comparison of the theoretical scattering (black) derived using
CORAL based on the Rtt1031–246-CTD model against the experimental scat-
tering data (gray). (B) Scheme showing the arrangement of the individual
Rtt1031–246 molecules across half the length of the CTD (13 heptad repeats),
which is the CTD construct employed during modeling using CORAL (con-
secutive interaction, “scenario 0,” see Fig. S7). (C) Representative model
obtained from the CORAL calculation for the consecutive interaction sce-
nario. Color coding is according to the scheme in B.

Fig. 4. Model of the Rtt103-CTDsome assembly involving the full-length
RNAPII CTD. The model of the RNAPII with the full-length CTD is decorated
with six dimers of Rtt1031–246 (Movie S2). The structure of RNAPII (PDB ID
code: 5F12) is combined with two CORAL models of the Rtt1031–246–CTD
complex, where C-interacting domains (CIDs) are arranged in a consecu-
tive manner.
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